OVERVIEW OF FINDING
THE MOST PROBABLE
EXPLANATION IN
BAYESIAN NETWORKS

MARCEL KAPFER

Finding a most probable explanation in a Bayesian network
is an important, but also complex task. Its goal is it to find a
most probable configuration for all variables in the Bayesian
network that are not determined by an given evidence. To
solve this there are numerous different (partly dependent,
partly independent) algorithms. In this paper we try to
collect some of the wide-spread algorithms. These contain
stochastic local search and stochastic greedy search with
their initialization algorithms, bucket elimination, simu-
lated annealing, iterative local search, and some genetic
algorithms. Additionally we give an overview over some
connected and relevant topics like the Generalized Bayes
Factor and restart points.

1 INTRODUCTION

Bayesian networks—as defined by Pearl in 1988 [7]—are nowadays
used in a wide area. Especially in medicine [8], but also in intelligent
data analysis [4] like weather forecasting, economics, sociology to name
just a few. The problem is, that some computations in or with Bayesian
networks (BNs) are NP-complete or even harder, finding the most
possible explanation being one of them[4]. Another strength of BNs is
the possibility to display them graphically, which enables an intuitive
access to the stored information [8].

Finding a helpful (in the sense of most probable but also most rel-
evant) explanation in an BN is therefore an important computational
task for the earlier named areas. The difficulty in this task lies in the
complexity and efficiency.

This paper focuses on different algorithms for finding explanations in
Bayesian networks. This includes most probably explanation as well as
most relevant explanation, as defined by Yuan, Lim, and Lu[8], and will

2 PRELIMINARIES

also look at maximum a posterior (MAP). The algorithms mentioned
in this paper can be separated into initialization algorithms as used
by stochastic local search and others. The first area takes—next to
stochastic local search (SLS)—a closer look at stochastic greedy search,
where definitions from different papers are reviewed. The second area
consists of generalized Bayes factor, bucket and mini-bucket elimination,
stochastic simulation, iterative local search, genetic algorithms, and
probabilistic crowding. Especially genetic algorithms (GA) will be
viewed more in-depth.

In section 2 we will define and explain some fundamentals concepts
and their notation concerning Bayesian networks and explanations. In
Section 3 we will cover some initialization and explanation-finding al-
gorithms. Some further relevant topics—concerning Bayesian networks
in general, as well as specific concepts used in some algorithms—are
presented in section 4.

2 PRELIMINARIES

This section contains the framework for the rest of the paper. Here
we will introduce the relevant notations and concepts and also take a
look at differences between the definitions of those subjects in other
papers. This introductory section contains information about Bayesian
networks in general, explanations in BNs, stochastic local search, and
its connection with BNs.

2.1 Bayesian Networks

Bayesian networks are in fact directed acyclic graphs (DAG) [8]. This
means they consist of nodes, which represent variables, and connec-
tions between them representing conditional dependencies [8] [2]. This
makes them extremely usable because of our knowledge in other areas
of graph theory and probability [3] (e.g. Bayes’ theorem, marginaliza-
tion, and factorization property [2]) and also easy to visualize and to
understand [8]. Concerning their structure it is also possible to cate-
gorize BNs in single and multiply connected graphs. The first group
can be further separated into trees and polytrees [3]. Mengshoel also
states that multiply connected graphs have the highest expressiveness,
followed by polytrees and then trees. In this case expressiveness means
the amount of information a Bayesian network can provide.

From a more mathematically point of view a Bayesian network can
be defined as follows.

Definition 1 (Bayesian Network). Let (X, E) be a DAG with n = |X| nodes
and m = |E|edges. Further let P = {Pr(X;Ix,), ... ,Pr(XnIHXn)} be a set of
probability function for (X, E), where Pr(X;I1x,) is the conditional probability
distribution for X; (also called conditional probability table (CPT)). The

2 PRELIMINARIES

combination of P and (X, E) as (X, E, P) is now called an Bayesian network.
Let now 7y, be the instantiation of the parents of X;, given by Ilx . This
follows the joint probability function

Pr(x) =Pr(Xy =xq,...,X,, = x,,) = nPr(ximXi). (1)
i=1

But why are Bayesian networks interesting? It allows us to find e.g.
a most probable explanation for a given evidence. In other words:
the algorithms discussed later allow you to use a Bayesian network in
combination with some known values (the evidence) to find the values
of the other variables in the network (the explanation).

2.2 Explanations

An explanation in an Bayesian network is a set of variables that can
be computed if the Bayesian network is initialized with another set
of known variables (the so-called evidence). While there are many
different algorithms for calculating the explanation, the goal of this
section is, to provide an overview of the “different” kind of explanation
that can be calculated as well as other relevant basic information for
dealing with the algorithms. There are also methods using singleton
explanations and simplifying, but those are not able to give an explana-
tion in more complex cases [8]. This section as well as the algorithms
viewed later focus on multivariate explanations.

For us are now three different kinds of explanation relevant: maxi-
mum a posteriori (MAP), most probable explanation (MPE), and the
k most probable explanations (K-MPE) [8]. The first, maximum a
posteriori (MAP), takes evidence for a set of variables and returns an
explanation for a given set of target variables [8]. The concept of a
most probable explanation (MPE) is quite similar: the only difference
is, that a explanation will be calculated for all variables and not just for
a chosen set [8]. K-MPE is the same as MPE but instead of the most
relevant explanation, the k most relevant explanations are calculated.

But what is a good explanation? Yuan, Lim and Li are using the words
precise and concise for answering that question [8]. This means that an
explanation should only contain distinct and relevant results in an as-
short-as-possible form. In their paper they introduce the “most relevant
explanation” (MRE) to fulfill these requirements. MRE calculates an
explanation for the target variables that has the greatest generalized
Bayes factor (GBF) (see 4.4) [8]. As such it is partly an extension to
MPE where some irrelevant variables are purged and another relevance
measure is used. To further fight against non-concise explanations
two combinable solutions are proposed by Yuan, Lim and Lu: pre-
pruning and post-pruning. Pre-pruning consists of removing unneeded
variables before calculating an explanation and post-pruning prunes
non-important variables from the calculated explanation. They further

3 ALGORITHMS

write, that these pruning methods wont work with methods using
probability as a relevance measure. To use “likelihood of the evidence”
as a method is also not recommended, due to the fact, that there focus
is laid on preciseness but not on conciseness [8]. Yuan, Lim and Lu
then use their generalized form of the Bayes factor (GBF). The Bayes
factor compare two hypothesis while the generalized one is used to
compare a posterior with a prior hypothesis [8].

Additionally it is worth mentioning, that finding an MPE or MRE is
NP-hard [8] [1].

3 ALGORITHMS

In this section we will look at explanation-finding algorithms. This
includes, next to stochastic local search and stochastic greedy search
(SGS), bucket elimination, stochastic simulation, simulated annealing,
genetic algorithms, and probabilistic crowding. Those algorithms are
responsible for actually finding the most probable/relevant explanation
(see 2.2).

3.1 Stochastic Local Search

Stochastic local search (SLS) is an algorithm that especially uses the
knowledge in graph theory and probability research. It depends on
three things: noise, an initialization algorithm (4.2) and restarts at
certain points (4.1) [6]. While SLS may deliver good solution under
idealistic conditions [1], its run time is highly variable, which also
depends on the used initial explanation [6].

It is also possible to achieve quite good, but not optimal, solutions
using heuristic. This brings the advantage of lower space and time
requirements [1]. Using SLS without heuristics may bring a poor per-
formance.

In more advanced use cases different algorithms and heuristics are
combined in an so called portfolio. This allows more efficient solving
of computational hard problems [5]. It is further stated that SLS is
also competitive in comparison with other MPE and MAP hypothesis
calculation.

While SLS can be seen as an own algorithms there are also various
algorithms based on the concepts of SLS which promises a more optimal
MPE computation. SLS can therefore also rather be viewed as a group
of algorithms [1] which consists for example of stochastic greedy search
3.2 and stochastic simulation 3.3.

3 ALGORITHMS

3.2 Stochastic Greedy Search

As already mentioned, stochastic greedy search (SGS) is a stochas-
tic local search algorithm for finding MPEs in BNs [6]. Its strength
lies in the initialization step, which makes it competitive to other ap-
proaches. A few algorithms for this initialization are listed in 4.2, but
GraphBDP/GraphFDP seems to be preferred [6].

Concerning its structure, SGS has some similarities with the WalkSAT
family which again shows the benefits of BNs through their similarities
with some other well researched and known areas [6].

An important constant in SGS is MAX-FLIPS, which sets the amount
of flipping a variable before the computation is restarted. If the calcula-
tion is restarted a new start explanation is generated using the favored
algorithm [6].

For “storing” the algorithms in use SGS has two portfolios. The first
for greedy and noise search algorithms and the other for initialization
algorithms [6].

The duration of the calculation is given using two different techniques.
First the run length distribution, which can be calculated from reviewing
the algorithm and second the run time distribution, which is the needed
time. While the first is obviously only dependent on the algorithm, the
second one depends heavily on the used hardware and software [6].

There are also two different kinds of SGS algorithms, which are
named SimpleSGS and OperatorSGS. OperatorSGS is like described
above: it uses portfolios and some way for choosing in those which
can be based on round-robin or on probability. SimpleSGS on the
other hand does not have portfolios and works only with previously
set algorithms [3] [5].

In another source ([3]) it is also stated that SGS is an generalization
of GSAT and share similarities to stochastic simulation and iterative
local search. Mengshoel writes also the controversy opinion, that SGS
is not an SLS algorithm but independently and concurrently created
with SLS, while sharing some concepts and ideas.

3.3 Stochastic Simulation

Next to stochastic local search and stochastic greedy search, stochas-
tic simulation (also known as Gibbs Sampling) is another stochastic
algorithm . It is a quite simple concept based on random initial assign-
ments, where each sample is computed by changing a variable from
the previous one. This variable may be picked on three different ways:
at random, by a schedule, or—the most complex variant—based on a
probability distribution and the neighbors current values. An stochastic
simulation returns either an sample with the highest probability or the
most frequent one as a result [1].

3 ALGORITHMS

3.4 Simulated Annealing

Following the listing of stochastic algorithms for MPE finding, another
one is named simulated annealing. Simulated annealing combines
hill-climbing and random selection for changing variables [1].
Simulated annealing starts with a random assignment of the variables
(A), a so-called temperature (t) and a cost function (k). The iteration
process is repeated until ¢ is 0 and consists of the following steps. First
aneighbor for A is selected, called A’. If the cost function of A’ is higher
than the one of A (that means, if 1(A") > h(A)) then A will be set to A’,

h(A)—=h(A"))

otherwise this will only be done with the probability e™ 7 . Finally
t is reduced and the process starts over [1].

3.5 Bucket Elimination

Next to the reviewed stochastic algorithms there are also some, which
are not stochastic. One of them is bucket elimination [1].

A concept for this algorithm is called min-with variable ordering for
ordering the graph from last to first. In the next step the remaining
graph with non-empty variables is viewed and the one with the fewest
neighbors chosen. For each variable a so-called bucket is created and at
the initialization phase specific probability matrices are placed into the
variable buckets [1].

Following that initialization phase, every bucket is processed in a
first phase on its own from last to first creating a new function of the
existing probability matrices and eliminating the bucket. The second
phase then consists of creating the solution. For this a value is assigned
to the value following the existing order [1].

There is also an process called mini-bucket elimination which can
approximate the result of the algorithm described above. Using the
mini-bucket elimination algorithm subsets all current bucket functions
are put into mini-buckets which are then processed the same [1].

3.6 Iterative Local Search

Another approach for finding the most probable explanation in a Bayesian
network is iterative local search which uses probabilistic hill-climbing
(also known as neighborhood search). This form of hill-climbing com-
bines next-ascend hill-climbing with random-mutation hill-climbing.
Iterative local search has the limitation to stop at local maxima. The
wished, global maxima can be found after some iterative steps [3].

4 FURTHER RELEVANT TOPICS

3.7 Genetic Algorithms

Genetic algorithms (GAs) are another family which are a bit differ-
ent than the others. Their concept is inspired by nature and relies on
stochastic and population-based search. GAs are especially used for
adaption, search, optimization, and complex learning. Generally the
comparison happens through evaluating a population representing
candidate for its fitness (survival of the fittest replacement). New “pop-
ulations” are generated using operators like crossover and mutation
and are based on the previous one. Their robustness, simplicity and
generality make them quite interesting. As a representative for this
family we will focus on the simple genetic algorithm (SGA) [3].

At the beginning the algorithm starts with a random population of the
“first generation” and iterates over each individual in the old population
(the current one is at the position j) until the amount of generations
reaches a given maximum. Each individual holds an binary alphabet
called “chromosomes”. During each (inner) iteration two additional
individuals will be selected based on their fitness. The next step is
called “crossover” where two given chromosomes are crossed over by
a certain probability (Pr(Crossover)). The results are added to the new
population atj and j+ 1. If the crossover happens, only one position will
be affected. After the crossover-step the chromosomes will be mutated
by another probability (Pr(Mutation)). The mutation function are also
applied on j and j + 1. Finally the fitness of the new individuals j and
j + 1lis calculated [3].

3.8 Probabilistic Crowding

Probabilistic Crowding follows a slightly different approach for finding
an MPE. Its goal is not to find the one, but multiple one. It thereby
follows two concepts. The first one is converging to multiple, highly pos-
sible, but different solutions and the second one is to find one solution
(if required) through slow down the convergence [3].

Those concepts are—for example—realized with the deterministic
crowding algorithm, which has one problem: the convergence is not
analyzed and it cannot be viewed what is computed.

Probabilistic crowding fixes that problem by using a probabilistic
instead of deterministic acceptance function. For this algorithms there
are several variants: one using mutation, one using crossover and a
combination of those two.

4 FURTHER RELEVANT TOPICS

Next to the above listed algorithms there are some interesting and
relevant topics which are important to look at. Some of them (like

4 FURTHER RELEVANT TOPICS

restart points and the generalized Bayes factor) are used among various
algorithms while other (like complexity) are general topics.

4.1 Restart Points

Restart points quite important for stochastic local search and stochastic
greedy search as a termination clause. The correct use of the restart
points can increase efficiency significantly. If the restart point also
known as MAX-FLIPS is too low, then much time will be wasted through
initialization. The goal is, to minimize the expected number of opera-
tions. For that, it is relevant to know an expected number of operation.
Mengshoel, Wilkins and Roth start by defining a total number of op-
erations in a try with Z = X + Y. X being number of initialization
operations and Y the number of flips. In connection with the portfolio,
those variables are generalized as Z(a, m) where a is the algorithm and
m = MAX—FLIPS (m = co means no restart). Further is the probability
for success and failure defined as p,(a, m) := Z?io Pr(Y(a,) = i) and
prla,m) := 1 — ps(a,m). The expected number of operations can now
be calculated with

mpf(a,m) + Z?;O iPr(Y(a,o) =i) +1

E(Z(a, =
(Z(a,m)) PXCRD) (2)
and the expectation-optimal MAX-FLIPS with
m'(a) = argmin(E(Z(a,m))),m € N (3)

[6].
4.2 Initialization Algorithms for Stochastic Algorithms

This subsection focuses on initialization algorithms for stochastic local
search (an algorithm for finding an explanation). The algorithms re-
viewed are unified initialization, forward simulation and—perhaps the
most interesting—dynamic programming with GraphBDP and Graph-
FDP. The task of an initialization algorithm consists of pre-filling all
non-evidence nodes [6].

“Unified initialization” (UI) is a initialization algorithm for stochastic
local search. Ul assigns at random and independently. For each non-
evidence node every possible state has an equal probability of being
chosen for initialization. This algorithm is in use in iterative local search,
simulated annealing, and genetic algorithms, but also in more general
SAT solvers. Ul has a complexity of O(n) since it needs to visit every
node exactly one time to check if it is a non-evidence node and in case
actonit. [6].

Another initialization algorithm is forward simulation, which starts
by dividing all nodes of the network in root and non-root ones [6]. The

4 FURTHER RELEVANT TOPICS

root nodes are first initialized depending on the initial explanation or
the prior distribution [3]. This initialization is done independently.
Following that the non-root and non-evidence nodes are initialized at
random following their conditional distribution.

A third approach for finding a starting point is called dynamic pro-
gramming and includes two generalized algorithms: GraphBDP and
GraphFDP. The generalization lies in splitting the graph into indepen-
dent trees. [6]. These trees are then initialized using a Viterbi approach
and GraphBDP/GraphFDP then collects the subexplanations. These al-
gorithms may find quite good and efficient algorithms for some tree-like
BNs.

4.3 Complexity

The complexity is certainly an quite interesting and relevant topic. As
already mentioned MPE-finding is NP-hard [2], but there are some
efficient algorithms [1], even if those are just optimized for specific
cases. Mengshoel also further states, that the expressiveness of a BN
correlates with its computational complexity.

It is further said, that MPE-finding is generally not tractable because
of the exponential amount of variable assignments, but still possibly,
when the treewidth of the graph is low or the MPE-probability is high.
Kwisthout mentions further, that P = NP would be necessary, so that
MPE-finding can be approximated [2].

4.4 Generalized Bayes Factor

For some algorithms and for comparison sometimes it is necessary to
have a value for a certain hypothesis. The generalized Bayes factor
(GBF) (as presented by Yuan [8]) is made to solve that task. Yuan
describes the GBF as a ,,weight of evidence” and uses it to compare a
hypothesis to an alternative one to figure out, which is more relevant. If
those hypothesis are statistical the factor is more likely called likelihood
ratio. The name Bayes factor is used, when there are unknown variables.
The problem with the “normal” Bayes factor is, that it can only handle
two hypotheses at a time.

This is why Yuan introduces the generalized Bayes factor [8], which
is not limited in that way. Another advantage is that it can be used to
compare prior and posterior probabilities of a singly hypothesis.

The GBF can be calculated using the following formula [8]:

Plelx) _ P(xle)(1 —P(x))

GBF(x;e) = P(elx) ~ P(x)(1—P(xle))’

5 FURTHER WORK AND CONCLUSION

5 FURTHER WORK AND CONCLUSION

This paper provides an overview over some algorithms for finding an
most possible or relevant explanation. It therefor takes also an look
at some preliminaries (like: what is an explanation?) and mentions
further relevant aspects (e.g. complexity) which are quite relevant for
a deeper understanding.

Due to limited time and space, not all existing algorithms for MPE
finding could be reviewed. To created an bigger overview would be a
possible starting point, but it would also be interesting to take a closer
look at the algorithms in pseudo-code and especially their complexity.
But perhaps the largest area that could be covered is a practical compar-
ison of the algorithms. While there are some test results, made under
different circumstances, it would be certainly a great opportunity to
make experiments with modern software and hardware for all listed
(maybe even more) MPE-finding algorithms.

This would maybe also show, that each listed algorithm has some
special cases, where it is quite efficient and others where it is not. The
other question in this case is also, if it is wise to concentrate on efficiency
and complexity or if the quality of the results is more important.

REFERENCES

[1] Kalev Kask and Rina Dechter. “Stochastic Local Search for Bayesian
Networks”. In: 1999.

[2] Johan Kwisthout. “Most probable explanations in Bayesian net-
works: Complexity and tractability”. In: International Journal of
Approximate Reasoning 52 (Aug. 2011), pp. 1452-1469. por: 10 .
1016/ .1ijar.2011.08.003.

[3] Ole]. Mengshoel. Efficient Bayesian Network Inference: Genetic Al-
gorithms, Stochastic Local Search, and Abstraction. Urbana, Illinois,

1989.
[4] Ole]. Mengshoel. “Understanding the role of noise in stochastic

local search: Analysis and experiments”. In: Artifcial Intelligence
172 (2008), pp. 955-990. por: 10.1016/j.artint.2007.09.010.

[5] Ole]. Mengshoel, Dan Roth, and C. Wilkins. “Portfolios in Stochas-
tic Local Search: Efficiently Computing Most Probable Explana-
tions in Bayesian Networks”. In: | Autom Reasoning 46 (2011),
pp. 103-160. por: 10.1007/s10817-010-9170-5.

[6] Ole]. Mengshoel, David C. Wilkins, and Dan Roth. “Initialization
and Restart in Stochastic Local Search: Computing a Most Proba-
ble Explanation in Bayesian Networks”. In: IEEE Transactions on
Knowledge and Data Engineering 23.2 (Feb. 2011), pp. 235-247. por:
10.1109/TKDE.2010.98.

10

https://doi.org/10.1016/j.ijar.2011.08.003
https://doi.org/10.1016/j.ijar.2011.08.003
https://doi.org/10.1016/j.artint.2007.09.010
https://doi.org/10.1007/s10817-010-9170-5
https://doi.org/10.1109/TKDE.2010.98

[7]

REFERENCES 11

J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of
Plausible Inference. Morgan Kaufmann series in representation and
reasoning. Morgan Kaufmann Publishers, 1988. 1sBN: 9781558604797

Changhe Yuan, Heejin Lim, and Tsai-Ching Lu. “Most Relevant Ex-
planation in Bayesian Networks”. In: Journal of Artifcial Intelligence
Research 42 (Nov. 2011), pp. 309-352.

	Introduction
	Preliminaries
	Bayesian Networks
	Explanations

	Algorithms
	Stochastic Local Search
	Stochastic Greedy Search
	Stochastic Simulation
	Simulated Annealing
	Bucket Elimination
	Iterative Local Search
	Genetic Algorithms
	Probabilistic Crowding

	Further relevant topics
	Restart Points
	Initialization Algorithms for Stochastic Algorithms
	Complexity
	Generalized Bayes Factor

	Further Work and Conclusion

